Finite Time Blow Up of Solutions for the m-Laplacian Equation With Variable Coefficients
نویسندگان
چکیده
In this work, we deal with the m- Laplacian equation time dependent variable coefficients. Under suitable conditions on coefficients, prove blow up of solutions for finite negative initial energy. These results partially generalize and extend some recent ones in previous literature.
منابع مشابه
Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents
In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملBlow up in Finite Time and Dynamics of Blow up Solutions for the L–critical Generalized Kdv Equation
In this paper, we are interested in the phenomenon of blow up in finite time (or formation of singularity in finite time) of solutions of the critical generalized KdV equation. Few results are known in the context of partial differential equations with a Hamiltonian structure. For the semilinear wave equation, or more generally for hyperbolic systems, the finite speed of propagation allows one ...
متن کاملSimple explicit formulae for finite time blow up solutions to the complex KdV equation
Simple explicit formulae for finite time blow up solutions to the complex KdV equation are obtained via a Darboux transformation. Diffusions induced by perturbations are calculated. 2007 Elsevier Ltd. All rights reserved.
متن کاملFinite Time Blow up for a Navier-stokes like Equation
We consider an equation similar to the Navier-Stokes equation. We show that there is initial data that exists in every Triebel-Lizorkin or Besov space (and hence in every Lebesgue and Sobolev space), such that after a finite time, the solution is in no Triebel-Lizorkin or Besov space (and hence in no Lebesgue or Sobolev space). The purpose is to show the limitations of the so called semigroup m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mag?allat? al-qa?disiyyaat? li-l-?ulu?m al-s?irfat?
سال: 2023
ISSN: ['1997-2490', '2411-3514']
DOI: https://doi.org/10.29350/2411-3514.1001